HW 6 SOLUTIONS

Problem 1
HF Chapter 4, problem 24

Our effective potential here is

Verr

(1)
where [y = % We can write this as
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Now, we would like to get rid of the « in (2) to obtain the EOM for the

Kepler problem, whose solution we know. To do this, define ¢’ = a¢, so that
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Then we have the Kepler problem in terms of ¢’,1' so we just read off the
solution:
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= 1+ ecos(agp) (5)

So our definition of « agrees with the text’s, and we have found it equal to

1+ 5
Now, according to (5), 7 attains it’s minimum (perihelion) at ¢ = 0, 2=

)’ o)

so the precession angle A¢ after one orbit, which is the difference between
2m and the actual angular distance traveled between perihelia, is
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The time it takes to precess this much is the period, given by eqn (4.60),
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so the rate of precession is
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Problem 2

a)The equation for the hyperbolic orbits in cartesian coordinates is

p=—\r?+y>+ex (9)

which can be rearranged to give

bog /e Boon, (10)

We are looking for the straight line which is the limit of this curve as x (and
y) go to infinity. Substituting y = mx + b into (10) and taking the limit as

x goes to infinity yields
m=+ve -1 (11)

To find the intercept we demand that the difference between our line y =

+ve? — 1z + b and the hyperbola y = +x,/—1+4 (2 —¢€)? go to 0 as x ap-

proaches infinity. We Taylor expand this difference in the small quantity
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so taking the limit as x goes to infinity yields
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so our line is

€p
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b)At infinity, the actual hyperbolic orbit of the particle and the asymptotes
coincide, so we can evaluate the angular momentum [ at infinity to get

[ = |Too X Poo| = HrecVoosind = pbvy, (19)
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where we used elementary trigonometry to see that b = rsinfl for the asymp-
tote everywhere, and hence for the hyperbola at infinity.

Then, using vy, = /2E/p and | = ’;—]g(eQ — 1) we have
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Problem 3
a)We compute % in cylindrical basis vectors:
dA dp dr
— = — xL - pk— 21
a — a M (2D)
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= 0. (24)

where in the first equality we used the fact that L is constant, in the second

equality we used ‘fi—f; = —T%f' and % = 0@, and in the last equality we used
the definition of /.

b)Assume that perihelion (closest approach) occurs along the positive x-axis.
Then, using that at perihelion p = [/ry, we evaluate A:
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A= ly x lz — pkx = ,uk(]— — 1)x = pkex (25)
r ukr

so A has magnitude pke and points in the direction of the perihelion. It’s

existence is thus seen to be linked with the fact that the oribts in the Kepler

problem are closed, which is due to an extra symmetry peculiar to the Kepler

problem (and the isotropic harmonic oscillator, the other system with closed

orbits).

Problem 4
a)Using r = (Rcosf, Rsinf, z) we have
L= %1*2 + 5r2 = %(RQG2 + 23 + 5(1%2 + 2%) (26)
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b)We have
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and so Hamilton’s equations are
. P
= — 30
z - (30)
Po
0 = 31
T (31)
pg = 0 (33)
Problem 5
a)Using /1 — 2 ~ 1 — Sz gives
Lz—mc2+%x2—e¢+EX-A (34)
c

which up to the irrelevant constant term —mc? (which represents the rest
mass) is the same as our nonrelativistic lagrangian.

b)We have
oL ma' e
= =—— = —— + —A; 35
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so in terms of vectors )
L.Q —p—SA. (36)
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Dotting (36) with itself yields
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which can be solved for x2, yielding
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Combining (36) and (38) yields x in terms of p:
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so we can now write the Hamiltonian, substituting our admittedly unwieldy
expression (41) for x:

H = p-x—L (42)
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where we have skipped a few steps of algebraic manipulation between equal-
ities.

Now we wish to find Hamilton’s equations. This will be ugly. We’'ll do
this in vector notation (i.e. we’ll write %—g to stand for the vector whose ith
component is 22), we’ll make use of the vector identity V(A-B) = A x (V x
B) + (A -V)B + A < B as well as Maxwell’s Equations E = ~V® — 194

c ot
B =V x A, and we’ll skip some algebra. We have
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and now that we're done taking derivatives we can eliminate p for x, yielding
(eventually)
[#2(kx B+ (% V)A)]

H = ¢ —eVo 49
P 5 e (49)
which, when combined with
ma m e, 0A
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(which is obtained by time differentiating (36)), yields, eventually,
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ff_j 02(/ 7»;_5)3 c

which is the Lorenz force law plus an additional correction term which ba-
sically functions to prevent the mass from accelerating beyond the speed of
light.




